Department of Electrical and Computer Engineering
Summer Semester - 2021/2022
ENCS2340|Digital Systems
First Exam, August 8, 2022
Time Allowed: 60 Minutes

Name	Yazah AbuAlowh
ID	1210145
Section	3

1	2	3	4	5	6	$7 /$	8	9	10
d	A	A	E	E	A	B	A	B	B

11	12	13	14	15	16	17	18	19	20
F	C	A	A	A	$B C A$	D	A	B	D
C		C			C				

Choose the correct answer of the following questions:

1. The following K-Map is a representation of the following function:
A. $f=b^{\prime} c^{\prime} d^{\prime}+b c d+a c d^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime} d$
B. $f=b^{\prime} c^{\prime} d^{\prime}+b d^{\prime}+a c d^{\prime}+a^{\prime} b c^{\prime} d$
(C) $f=b^{\prime} c^{\prime} d^{\prime}+b c d+a c d^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c$
D. $f=b c d+a c d^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime} d$
E. $f=b^{\prime} c^{\prime} d^{\prime}+a c d^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime} d$

2. For the following K-Map, there are:
(4) 4 prime implicants and all of them are essential
B. 4 prime implicants and none of them are essential
C. 5 prime implicants and 2 of them are essential
(D. 7 prime implicants and 2 of them are essential
E. 5 prime implicants and 1 of them are essential

3. The minimum sum-of-products expression for the following function is:
$f(a, b, c, d)=\Pi(1,9,11,12,14)$
$\sum(0,2,3, n, 5,6$
A. $F=a^{\prime} c+b^{\prime} d^{\prime}+b d+a^{\prime} d$
B. $F=a^{\prime} c+b^{\prime} d^{\prime}+b d+a^{\prime} b$
C. $F=a^{\prime} c+b^{\prime} d^{\prime}+b d+a^{\prime} b$
D. $F=a^{\prime} c+b^{\prime} d^{\prime}+b d+a d^{\prime}$
(E.) None of the above
4. The minimum products-of-sum expression for the following function is: $f(a, b, c, d)=\Sigma m(1,3,4,11)+\Sigma d(2,7,8,12,14,15)$
A. $f=\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}\right)(b+d)\left(c^{\prime}+d^{\prime}\right)$

$$
(1,2,3,4,7,8,11,12,14,15
$$

B. $f=\left(a^{\prime}+c\right)\left(b^{\prime}+d^{\prime}\right)\left(b^{\prime}+d\right)(c+d)$
C. $f=\left(a^{\prime}+c\right)\left(b^{\prime}+d^{\prime}\right)(b+d)$
D. $f=\left(a^{\prime}+c\right)\left(b^{\prime}+d^{\prime}\right)(b+d)\left(b^{\prime}+c^{\prime}\right)$
E. none of the above
5. The implementation of the following function using NAND gates is:
$F=w x y+w x^{\prime} y^{\prime}+w z$
A. $(w x y)^{\prime}+\left(w x^{\prime} y^{\prime}\right)+(w z)$
B. $(w x y)+\left(w x^{\prime} y^{\prime}\right)^{\prime}+(w z)^{\prime}$
C. $(w+x+y) \cdot\left(w+x^{\prime}+y^{\prime}\right)^{\prime} \cdot(w+z)^{\prime}$
D. $(w x y)^{\prime}+\left(w x^{\prime} y^{\prime}\right)^{\prime}+(w z)^{\prime}$
E. $\left((w x y)^{\prime} \cdot\left(w x^{\prime} y^{\prime}\right)^{\prime} \cdot(w z)^{\prime}\right)^{\prime}$

$$
\text { A. checker } 3 \text { bit }
$$

6. The following circuit represents: $\quad * \quad$ even parity $0 . d d$
(A) 3 Bit Odd Parity Checker circuit
B. 3 Bit Even Parity Checker circuit
C. 4 Bit odd Parity Generator circuit
D. 4 Bit Even Parity Generator circuit
E. None of the above

7. Given the following expression, which of the following is the most simplified equivalent: $F=(A B)^{\prime} \cdot\left(A^{\prime}+B\right) \cdot\left(B^{\prime}+B\right)$
A. $\left(A^{\prime}+B\right)$
(B. A^{\prime}
C. $(A B)^{\prime} \cdot\left(B^{\prime}+B\right)$
D. $\left(B^{\prime}+B\right)$
E. $(A B)^{\prime} \cdot\left(A^{\prime}+B\right)$

$$
\begin{aligned}
\left(A^{\prime}+B^{\prime}\right) \cdot & \left(A^{\prime}+B\right)(1) \\
& \left(A^{\prime}+B^{\prime}\right)\left(A^{\prime}\right)+\left(A^{\prime}+B^{\prime}\right)(B)
\end{aligned}
$$

8. Given $F(x, y, z)=x+y z$, then the representation of F^{\prime} in product of maxterms is:
A. $\Pi(3,4,5,6,7)$
B. $\Sigma(3,4,5,6,7)$
$A^{\prime}\left(B^{\prime}+B\right)$
C. $\Sigma(0,1)$
D. $\Pi(0,1,2)$
E. $\Pi(0,1)$
9. The dual of the following expression is: $\left(A B^{\prime}+C\right) D^{\prime}+E$

$$
\left.\left(\left(A+B^{\prime}\right) \cdot C\right)+d^{\prime}\right) \cdot E
$$

A. $A B^{\prime} D^{\prime}+C D^{\prime}+E$

$$
\left(A+B^{\prime}+d^{\prime}\right),\left(c+d^{\prime}\right), E
$$

B. $\left(A+B^{\prime}+D^{\prime}\right)\left(C+D^{\prime}\right) E$
C. $\left(A^{\prime}+B+D\right)\left(C^{\prime}+D\right) E^{\prime}$
D. None of the above
10. The largest fraction value if m fraction digits are used in radix r is:
A. $-r^{-m}$
(B) $1-r^{-m}$
(C) $r^{m}-1$
D. $1-r^{m}$
E. None of the above
$1-\frac{1}{h}$
0.25
-2
$1-2$ $*$
\qquad
11. The 8 -bit binary representation of -27 using signed magnitude is:

K 2 bits

$$
\text { (2) } m \cdot i^{2}
$$

$$
1 \times 2^{-1}+2^{* 2}
$$

$$
0.5+9 \cdot 25
$$

$$
\frac{1}{2}+\frac{1}{4}=0.75
$$

A. 111111011
B. 000011011
C. 100011011
D. 000011011
E. None of the above

12. The (670-831) using 9's complement method is
A. 168
B. 838

C. 9's complement of 161
D. 9's complement of 838
E. -(9's complement of 838)
A. 11100011
B. 00010010

$$
\begin{aligned}
& \text { gray to binary } \\
& 10010010
\end{aligned}
$$

C. 10010001

$$
11100011
$$

D. 11101101
E. None of the above
14. The octal value of the following decimal value is: $(57.5)_{10}$
A. 71.4
B. 74.625

$$
0.5
$$

$$
8 x
$$

C. 17.25

4.0
D. 47.526
15. Given that A, B, and C are numbers, and let $C=A+B$ or $C=A-B$, the overflow will occurred if:
A. $(+A)+(+B)=-C$

- $e^{-r^{r}}$

$$
A+B
$$

(8.) $(-A)+(-B)=+C$
C. $(+A)-(-B)=-C$

$$
A-B
$$

D. $(-A)-(+B)=+C$
(E. All of the above
光

$$
A+\left(2^{N}-B\right)
$$

16. In 2's complement representation, the number 11100101 represents the decimal value of:
A. 37
B. -31

00011011
C. 27
(D) -27
$1+2+8+16$
E. -101
17. The circuit of the following figure realizes the function:

A. $Y=\left(A^{\prime}+B^{\prime}\right) C+(D E)^{\prime}$
B. $Y=A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}+E^{\prime}$ $\left(C \cdot(A \cdot B)^{\prime}\right)+\left(D^{\prime}+E^{\prime}\right)$
C. $Y=A B+C+D E$
D. $Y=A B+C(D+E)$
c. $\left(A^{\prime}+B^{\prime}\right)$
E. None of the above
18. The department of computer engineering has 50 courses, if we assign a code to each course, what is the minimum number of bits required:
(B. 5
萄
$2^{n}=50$
$\log \log (50) \quad 6 \mathrm{bits}$
D. 4
E. None of the above.
19. For the logic circuit of the given figure, the minimize expression is:

A. $Y=A+B+C$
B. $Y=A+B$
C. $Y=A B C$
D. $Y=\left(A B^{\prime} C\right)^{\prime}$
E. None of the above
20. There are Minterms for an n input variables:
A. n
B. $n-1$
(e.) 2^{n}
D. $2^{n}-1$
E. $n^{n-1}-1$
$A^{\prime} \rightarrow \quad\left(A B^{\prime} C\right)$
$\left(\left(A^{\prime}+B^{\prime}\right) \cdot C\right)+\left(D^{\prime}+E^{\prime}\right)$
$E^{\prime}=($ ND)

$$
\left(A^{\prime}+B^{\prime}\right) C+(D E)^{\prime}
$$

